
Docking for Autonomous Mobile Robots
Chris Rowe ‘20
Advised by Prof. Fixel

Trinity College Department of Engineering

Abstract

Design Approach

Dock Detection Perception Pipeline

Introduction

When the dock’s pose relative to the robot is successfully 

identified, the motion planner calculates a plan composed 

of a sequence of velocity commands that enables the robot 

to move from its initial position and orientation to the 

target position and orientation of the dock. 

The plan is calculated using a feedback control law [1], 

where the control error variables for radial distance (r), 

current heading, (δ) and target orientation (ϕ) are reduced 

to zero through the control variables for linear velocity (v)

and angular velocity (ω).

The feedback control law has several variables which can be 

adjusted to modify the generated path based on physical 

properties of the robot and preferences of the user. 

The docking software has two main modules: the perception 

pipeline and the motion planner. The perception pipeline processes 

the point cloud to extract the dock and estimate its pose relative to 

the robot. The motion planner uses the estimated pose to calculate 

the plan that the robot must follow to arrive at the dock pose.

Future Work

Acknowledgements
• Prof. Fixel
• Prof. Mertens

• Prof. Huang
• Prof. Byers

• Nancy Fleming
• Andrew Musulin

References

[1] Park, Jong Jin. “Graceful Navigation for Mobile Robots in Dynamic and Uncertain Environments.” (2016).
https://deepblue.lib.umich.edu/handle/2027.42/120760

Dock Pose 
Estimation

Find transform 
between robot and 

dock

Scan Match

Line Segmentation
Clustering

Point 
Cloud

Generate Velocities

Motion Command

Local Planner

Find path between 
current pose and 

dock

Motor 
Controller

Robot Pose 
Estimation

Odometry

A raw point cloud is input from the onboard 

LiDAR, which takes a 2D scan of the 

surrounding environment. This point cloud 

contains the surfaces of all objects detected 

within the robot’s environment, including the 

dock itself and various obstacles that must be 

extracted.

LIDAR SCAN

Density-based clustering is performed on the 

raw point cloud to separate the input cloud 

into individual clouds, each of which contains 

only points belonging to a single object. This 

reduces the computation load for further 

processes since each cluster can now be 

analyzed individually.

CLUSTERING

The Random Sample Consensus (RANSAC) 

algorithm is performed on each cluster cloud to 

identify any lines. In cases where the dock 

shape is made only of lines, clusters containing 

no lines can be ruled out as a potential dock 

cluster. Since the next step is computationally 

expensive, elimination of obstacle clusters 

reduces computation load.

LINE DETECTION

The Iterative Closest Point (ICP) algorithm is 

applied to each cluster marked as a potential 

dock cluster. ICP uses the reference point cloud 

obtained from the supplied dock model as a 

template and attempts to match the measured 

clusters to the template. ICP works by iteratively 

applying transformations containing translations 

and rotations to the input point cloud and 

calculates the mean squared distance error

Dock Model Template

POSE ESTIMATION

To identify the dock within an input point cloud, 

the CAD model of the dock must be supplied by the 

user. There is a tutorial provided for the user to 

follow in order to obtain a .PLY point cloud file from 

the CAD model. The .PLY point cloud will be used as 

a reference for matching the dock template to 

points within the input point cloud. 

Motion Planning

Results

between corresponding features as a result of the applied transformation. The cluster with the smallest 

error is most likely the dock cluster, and the corresponding transformation is used as the pose 

transformation between the robot and the dock.

From a raw LiDAR point cloud, the program is 

able to use a supplied template of the dock to 

isolate the points belonging to the dock and 

extract them into a separate cluster. 

The program is then able to successfully 

estimate the pose of the dock using ICP. In 

simulation, pose estimation can be accurate 

within 1-2cm depending on the distance 

resolution of the LiDAR simulation. Live testing 

was performed on the Turtlebot LDS-01 LiDAR, 

which has a distance accuracy of ± 1.5cm and

achieved accuracy within 5-8cm. 

With a supplied dock pose, the motion planner can successfully generate smooth trajectories that respect the dynamic constraints 

of the robot. Using the GUI, the gains can be adjusted to fit the curvature, velocity and acceleration preferences of the user. At the 

default planning rate of 10Hz, the planner will output successful trajectories. However, the lower the frequency, the lower the 

update rate, meaning the robot can veer off course longer without the planner readjusting.

The design report and ROS package can be downloaded from http://github.com/rwbot/docking.

Docking is a specific utilization of landmark localization – comparing 

detected local features against a known map containing unique 

“landmark” features to determine current local coordinates. This 

capstone aims to develop a ROS package that adds general docking 

functionality to an autonomous mobile robot of differential drive 

configuration. The package must be capable of determining a valid 

pose-sequence that can mate the robot with the dock. The design 

and implementation of each of the stages within the perception 

pipeline are described, and the results obtained from running the 

perception pipeline are provided. Similarly, the design and 

implementation of the motion planner are described and analyzed, 

and results are provided.

Localization: The process by which a robot determines its pose 

(representation of its position and orientation) within a parent 

coordinate frame. 

Docking: A specific utilization of “landmark localization”, comparing 

detected local features against a known map containing unique 

“landmarks”. Any task given to a mobile robot requires it to move 

from its current pose to a pose. Thus, docking and localization in 

general are fundamental components of any system involved in 

robotics, and autonomous navigation. 

Robot Operating System (ROS): Software framework created to 

standardize robotics development tools. Software are provided 

through modules called packages, each of which provides a unique 

functionality. Among the packages available through ROS, there are 

some that perform odometry, path planning, localization etc.

ROS Navigation Stack Integration: The ROS Nav Stack is a collection of packages supporting autonomous navigation. The Nav Stack is 

organized into modules having standardized communication and has multiple packages that can be chosen from when setting up a 

module. In its current state, the docking package functions only as a standalone package. Due to time constraints, the package has not 

yet been modularized into a component easily integrable with the nav stack. Simply, this means that a robot can either use the nav stack 

to navigate, or use the docking package to perform docking, but not both at the same time.

Obstacle Avoidance: The perception pipeline works under the assumption that there are no obstacles between the robot and the dock. 

This is a logical conclusion, since an obstacle between the LiDAR and the dock would prevent the LiDAR from scanning the dock. 

Similarly, the feedback control law used by the motion planner also shares this limitation, not only because it depends on an input dock 

pose from the perception pipeline in order to work, but also because fundamentally the control law does not consider obstacles. As 

such, for the robot to be of practical use, an obstacle avoidance would be required to handle navigation/docking in the presence of static 

and dynamic obstacles.

Top-down view of dock CAD model

Point cloud template obtained from CAD model

Overview of software structure

Visualization of the clusters detected within the point cloud

LiDAR scan containing the dock along with environmental obstacles

Visualization of the estimated dock pose

Visualization of the lines detected within each cluster

Diagram showing control system variables

Example simulation run of dock pose detection along with motion plan generation and execution.


