
Donovan Palmer ‘20, Hannah Neufeld ‘20
Faculty Advisor: Prof. John Mertens

Autonomous Robo-Assistant

Abstract Mechanical & Electrical Design

Key System Components

Problem Definition

Odometry

Acknowledgements

Conclusions & Future Work

Image Processing

Drive Controller

Component Purpose Cost

NVIDIA Jetson Nano Top-level processors; Master Node $94.99

Arduino MEGA 2560 Low-level processor; Serial Node $40.00

RP LiDAR A1 2D Laser Scan $99.00

BNO055 IMU Accelerometer, gyro, magnetometer $34.95

MDD10A Motor Driver Dual channel control of motors
(PWM/direction)

$19.25

Planetary Gear Motor
with encoders (2)

Diff-drive; determine robot velocity; odometry
information

$119.98

Raspberry Pi V2-8 Megapixel Read office number $29.95

Total Cost of Key Components $438.12

The goal of image processing was to add
another layer of perception, on top of the LiDAR
scans, to the software stack to better the visual
localization capabilities.

How the image processing code works:
1. Input the image
2. Turn the picture into black and white, reduce

noise with 5x5 Gaussian filter, and use Canny
edge detection

3. Crop the black and white image by finding a
contour with 4 vertices

4. Threshold black and white cropped image
5. Morph that image
6. Find ROI, a rectangle around each number, by

contours
i. Loop over ROI with an array of seven-

segment display lines to determine digits
7. Output the numbers read as a three digit

number

Design and build a robot that can autonomously deliver a payload
from one office to another within MECC.

1

2

3

4

5

6

7

The original aim of this project was to create an autonomous robot to deliver a payload from
one office to another within MECC. Although the goal was not fully completed, a physical robot
was built with working drive control and odometry. In order to detect landmarks, such as MECC
offices, a code was created to detect an office from an image and output the room number.
Due to unforeseen circumstances, the following will be accomplished in the future: 3D print
chassis cover, create a headless setup, finalize odometry messages with IMU fused, running the
navigation stack, integrate image processing code with ROS, complete the URDF so that it is
compatible with Gazebo Simulation, and implement Gmapping.

The Compact Autonomous Robo-Assistant (CARA) is a land-based robot that aims to

localize within an indoor environment using a combination of perception and odometry. In

order to achieve perception, a two-dimensional RP LiDAR captures a 360-degree laser scan

of the environment and a camera which captures landmark frames for image processing.

Odometry is achieved through quadrature encoders and fused BNO055 IMU data which

helps localize with a continuously updated pose estimate within its environment. This

robot follows a differential drive kinematic model and uses a motor controller with an

Arduino MEGA 2560 to power and control two planetary gear DC motors via pulse-width-

modulation (PWM). A NVIDIA Jetson Nano was used as a Linux machine capable of running

the Robot Operating System (ROS) – a middleware that facilitates robotics software

development through hardware abstraction and published packages. A ROS software

package was developed for the robot control and visualization. In the robot’s current state,

the package allows for tuning velocity output using PID control and publishing odometry

messages given requested motor speeds.

3D Model: Chassis
• 80/20 Aluminum Extrusion
• Modular
• Lightweight
• Inertial Properties

3D Model: Chassis Shell
• 3D Printable
• ABS plastic
• Lightweight
• Inertial Properties

Physical Robot Build without Shell
• Hardware subsystems are

mounted
• Electrical connections can be

seen in the schematic below.

Electrical Wiring Schematic

The differential drive mobile robot kinematic model was used to calculate desired velocities given Twist messages
in ROS. Quadrature encoders, attached to the motor output shafts, were decoded to determine the actual speed
of the motors that resulted from this request. A closed-loop PID controller was used and tuned manually to
minimize the error between requested and actual motor velocities. The actual velocity was computed on the
Arduino and was sent to the NVIDIA Jetson Nano via rosserial for odometry publishing and frame transforms.

Odometry is the estimation of positional changes over time
using data gathered from a variety of sensors.

Quadrature encoders were used to compute odometry, but
in future an IMU will also be fused to provide an additional
source of odometry.

The ROS /odom topic subscribes to the /speed topic which
was published from the robot drive controller node shown
above. An odometry message was generated and published
so that the navigation stack receives velocity information
and computes the necessary frame transforms.

The transform from the “odom” frame to the “base_link”
frame (chassis) was broadcasted using the tf ROS package.Visualizing the odometry frame using the rviz

ROS tool. Also shown is a 2D LiDAR scan.

• Prof. John Mertens
• Andrew Musulin
• NASA CT Space Grant (Pro-Sum #P-1423)

ROS Package Dependencies:
• Driver for Serial Connection: https://github.com/ros-drivers/rosserial
• Driver for IMU: https://github.com/dheera/ros-imu-bno055
• Driver for LiDAR: https://github.com/robopeak/rplidar_ros
• Control: https://github.com/ros-controls/ros_control

https://github.com/ros-drivers/rosserial
https://github.com/dheera/ros-imu-bno055
https://github.com/robopeak/rplidar_ros
https://github.com/ros-controls/ros_control

