Design of a Flywheel-Controlled Inverted Pendulum

Lucas Duros ‘19, Gordon Hyduke ‘19, Jack Mclnnis ‘19
Faculty Advisor: Prof. Kevin Huang

Y Viathematical Mode

Control System Design

An inverted pendulum is an unstable, nonlinear mechanical system which y Governing equations of the linearized )
consists of a rigid pendulum with a center of mass located above its axis oendulum and motor were derived Pendulim Angle et input Voltage >
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cause it to fall due to gravity. The common control solution to the Second Law and Kirchoff’s Voltage Law 0 EI ( b VA I, Phi_dot >
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inverted pendulum problem consists of stabilization by translational Matrix equations below show the é ¥ State-Space Block Theta_dot >
motion of its base, as observed in ballbot and Segway-like devices. In complete pendulum model represented 0
contrast, this project explored an inverted pendulum control solution by in state-space form with three state- Flywheel Vel. Ref.
means of attaching and actuating an inertial flywheel mounted to the variables (¢ ¢ and 9') and one control Figure 2: Control block diagram of state-feedback controller
rigid pendulum body. An input control torque applied to the flywheel by a input (V.). K, and K, are parameters of The linear-quadratic regulator (LQR) method was used to design
brushed DC motor served to counteract any destabilizing torque. In order  the motaor which were experimentally the control system. LQR utilizes Q and R matrices to define a relative cost
to employ linear control tools, a third-order linear state-space ' found using system identification!3!. to each state-variable and control input. LQR minimizes a quadratic
approximation of the system was calculated about the equilibrium. ;f\:;‘zelléog'yafvzf?p;;mi‘igfsu'“m' cost function of Q, R, x and u to solve for optimal gains.
System identification unveiled physical motor parameters that prescribed labeled
a terminal motor voltage to generate the torque control input. With this -0 1 0 -0 7 100 0 O]
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regulation (LQR), was employed to achieve stabilization of the nonlinear bl = J =y J=Jr ||| + J=Js |V, - 0 0 50
system. The LQR framework regulates the system to the zero state using 0 _mgL 0 AL J * K K =[-300 —85 —05] (Gains)
state-feedback while simultaneously optimizing cost functions associated L=y J=y. L=y | |
with system state parameters and control input. Simulated results using & & o o1 [¢ o
6 4 0 0 114 0.
m Perturbations were applied to the stabilized physical pendulum system
] Ut N i < the f 4s the deci p ' while the Arduino Mega collected data. Following the perturbation, the
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sta II 12Ing motor.cy.c e. The sle ];Stab' |z.|ng motorcycelprow .es afsyste]:n input to a Simulink model and simulated. Comparison of results are
;ama ogous to training wheels for beginners as an afternative for sare shown below. Simulated results are very similar to measured results. This
carnins. helps confirm the validity of the mathematical model created.
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