

Fore-Sight

A golf simulation for practice at any time, for anyone

Ben Bejoian '25 & Ed Shi '25 Faculty Advisor: Kenneth Kousen Department of Computer Science, Trinity College, Hartford, CT

Introduction

Golf is a highly inaccessible sport. From expensive equipment, to time-consuming rounds, only those who can afford to expend the resources can get the practice they need. Fore-Sight is a computer application that lets players take their real-life experiences back to a virtual environment, where they can simulate and study the game as they please.

Technologies/Methods

MATLAB was used for simulation capabilities, including: Verlet Integration Scheme

Simulates realistic golf ball motion with live 3D visualization.

Image Based Terrain Modeling

Uses heightmap images to build 3D greens and compute slopes.

Multi-mode Learning

Manual and Ideal Finder modes support testing and optimization.

Real world Mapping

Converts results into real-world distances using USGA standards.

Python was used for its wide range of libraries, including: **Tkinter**

A library for UI design, which the user interfaces with as they customize their golf course.

MATLAB Engine

Serves as a bridge between Python and MATLAB.

Future Additions

Terrain Variants

Future iterations could incorporate more diverse green environments, including bunkers, water hazards, and out-of-bounds zones.

Adaptive Coaching

A coaching system could provide real-time feedback after missed putts, suggesting minor tweaks in angle or speed based on error patterns, enhancing the educational aspect of the simulation.

Stimpmeter Integration

A stimpmeter measures how fast a ball rolls on a green. Full integration would let users test green speed at different points, simulating real-world effects like slope and moisture on ball movement.

Shot History Log

A logging feature would record key data from each putt– angle, speed, outcome, and distance from the hole– allowing users to review past attempts, monitor improvement and analyze performance trends.

Acknowledgements

Brian Haidet

Creator of the original physics engine we built upon

Trinity College Computer Science Department

For all the help it's given us