Galaxy clusters are the largest gravitationally bound objects in the universe, whose formation and evolution are driven by dark energy and dark matter. Recent X-ray and microwave observations have provided unprecedented insights into the structure and evolution of the hot X-ray emitting plasma from their cores to the virialization region in outskirts of galaxy clusters. A number of multi-wavelength cluster surveys are underway to constrain the physics of structure formation and cosmology using galaxy clusters as probes. In this talk, I will describe recent advances in computational modeling of galaxy cluster formation with highlights on successes, challenges, and future prospects.

ABSTRACT:
Galaxy clusters are the largest gravitationally bound objects in the universe, whose formation and evolution are driven by dark energy and dark matter. Recent X-ray and microwave observations have provided unprecedented insights into the structure and evolution of the hot X-ray emitting plasma from their cores to the virialization region in outskirts of galaxy clusters. A number of multi-wavelength cluster surveys are underway to constrain the physics of structure formation and cosmology using galaxy clusters as probes. In this talk, I will describe recent advances in computational modeling of galaxy cluster formation with highlights on successes, challenges, and future prospects.